Nilpotent Gelfand pairs and Schwartz extensions of spherical transforms via quotient pairs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gelfand Pairs and Spherical Functions

This is a summary of the lectures delivered on Special Functions and Linear Representation of Lie Groups at the NSF-CBMS Research Conference at East Carolina University in March 5-9, 1979. The entire lectures will be published by the American Mathematical Society as a conference monograph in Mathematics.

متن کامل

ON RELATIVE CENTRAL EXTENSIONS AND COVERING PAIRS

Let (G;N) be a pair of groups. In this article, first we con-struct a relative central extension for the pair (G;N) such that specialtypes of covering pair of (G;N) are homomorphic image of it. Second, weshow that every perfect pair admits at least one covering pair. Finally,among extending some properties of perfect groups to perfect pairs, wecharacterize covering pairs of a perfect pair (G;N)...

متن کامل

Gelfand pairs

Let K ⊂ G be a compact subgroup of a real Lie group G. Denote by D(X) thealgebra of G-invariant differential operators on the homogeneous space X = G/K. ThenX is called commutative or the pair (G,K) is called a Gelfand pair if the algebra D(X)is commutative. Symmetric Riemannian homogeneous spaces introduced by Élie Cartanand weakly symmetric homogeneous spaces introduced by Sel...

متن کامل

The Orbit Method and Gelfand Pairs Associated with Nilpotent Lie Groups

Let K be a compact Lie group acting by automorphisms on a nilpotent Lie group N . One calls (K,N) a Gelfand pair when the integrable K-invariant functions on N form a commutative algebra under convolution. We prove that in this case the coadjoint orbits for G := K nN which meet the annihilator k⊥ of the Lie algebra k of K do so in single K-orbits. This generalizes a result of the authors and R....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2018

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2017.09.014